Worksheet 3 - Practice with Integration by Parts

1. Solve the following integrals using integration by parts. (Note: You may also need to use substitution in order to solve the integral.)

a)
$$\int (x+2)e^x dx$$
 b) $\int_1^2 x^3 \ln x dx$ c) $\int \arcsin x dx$ d) $\int x^3 e^{x^2} dx$ e) $\int_0^1 y\sqrt{3y+1} dy$ f) $\int \cos \sqrt{t} dt$ (Hint: begin with the substitution $w = \sqrt{t}$.)

2. For the following integrals, you will need perform integration by parts more than once to solve it.

a) $\int x^2 \sin(3x) dx$ b) $\int e^x \sin x dx$ c) $\int \cos^2 \theta d\theta$ If you remember your double angle formulae from trig, you can solve the last integral above without integration by parts.

- **3.** a) What is $\int (f(x)g(x))' dx$? (That is, what is the family of antidervatives of (f(x)g(x))'?)
 - b) Now use the product rule to write $\int (f(x)g(x))' dx$ as the sum of two integrals.
 - c) Use parts (a) and (b) to derive the integration by parts formula.
- **4.** $\mathbf{0} = \mathbf{1}$??!! Below, we use integration by parts on $\int \frac{1}{x} dx$ to "show" that 0=1. Find the mistake(s) in the argument.

$$u = \frac{1}{x} \quad \Rightarrow \quad du = -\frac{1}{x^2}.$$

$$dv = dx \quad \Rightarrow \quad v = x.$$
So
$$\int \frac{1}{x} dx \quad = \quad \left(\frac{1}{x}\right) x - \int -\frac{1}{x^2} dx$$

$$= \quad 1 + \int \frac{1}{x} dx.$$
So
$$\int \frac{1}{x} dx \quad = \quad 1 + \int \frac{1}{x} dx.$$
Thus,
$$0 \quad = \quad 1.$$

 ${f 5.}$ a) Use integration by parts to prove the reduction formula:

$$\int (\ln x)^n \, dx = x(\ln x)^n - n \int (\ln x)^{n-1} \, dx.$$

- b) Evaluate $\int (\ln x)^3 dx$ using the reduction formula above.
- 6. Some review! Use substitution to solve the following integrals.

a)
$$\int (x^3 + 1)^3 x^2 dx$$
 b) $\int \sin^7(2x) \cos(2x) dx$ c) $\int \frac{\sqrt{1 + \sqrt{x}}}{\sqrt{x}} dx$ d) $\int \frac{e^x}{1 + e^{2x}} dx$

7. Given the following table of values:

x	0	1	$\frac{\pi}{2}$	e	3
f(x)	5	7	8	10	11
f'(x)	2	4	6	9	12

evaluate the following integrals.

a)
$$\int_0^1 f'(x) \sin(f(x)) dx$$

b)
$$\int_{1}^{3} \frac{f'(x)}{f(x)} dx$$

c)
$$\int_0^1 e^x f'(e^x) \ dx$$

d)
$$\int_0^1 f'(x) \sin(f(x)) dx$$